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COMPUTATION OF GALOIS GROUPS 
OVER FUNCTION FIELDS 

THOMAS MATTMAN AND JOHN MCKAY 

ABSTRACT. Symmetric function theory provides a basis for computing Galois 
groups which is largely independent of the coefficient ring. An exact algorithm 
has been implemented over Q(t1, t2, .. ti) in Maple for degree up to 8. A 
table of polynomials realizing each transitive permutation group of degree 8 
as a Galois group over the rationals is included. 

INTRODUCTION 

There are currently three techniques used for computing the Galois group, 
GalQ(f), of an irreducible polynomial f over the rationals. First there is the method 
of Stauduhar [22, 12], described in his thesis [21] for polynomials of degree up to 8, 
which uses approximations to the roots of f. He forms resolvent polynomials with 
roots which are polynomial invariants of potential Galois groups, working down the 
upper semi-lattice of transitive subgroups of the symmetric group. The resolvent 
roots are evaluated on permutations of roots of the original polynomial given by 
some coset transversal. The resolvents are computed from approximate values of 
the roots of f, and factors (often linear) sought. 

This method appears in Cohen [4] and has been used by Olivier [15] for degree 
up to 11. It is generally fast but has exponential complexity in groups such as 
PSL(2, q) in its natural representation, see McKay [12]. It has the disadvantage 
of needing a complicated data structure for traversing the upper semi-lattice of 
transitive groups of a given degree, and requires storing (or generating) many coset 
transversals and polynomial invariants; careful control of rounding errors is needed 
for the result to constitute a proof. 

Second is the method of Darmon and Ford [7] in which they prove directly from p- 
adic approximations to the roots that the value of a polynomial invariant evaluated 
on the roots of f is a rational integer. 

The third method, which we use, is the method of symmetric functions. This is 
a refinement of that described for Galois groups over ?Q of degree up to 7 in Soicher 
and McKay [19], with which we assume familiarity. It is exact and, unlike the first 
two methods, has the advantage of being largely independent of the coefficient ring 
which may, for example, be a number field, K, a function field, K(t1, t2,... , tm)i) 
or a p-adic field extension. Here we compute GalK(f), K= Q(tl,t2,... , tm) for 
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f E K[x]. In Mattman [10] (supervised by the second author), this is implemented 
in Maple for polynomials of degree up to 8. 

THE METHOD 

As an example of our method we discuss the degree 8 case in detail. Let f be an 
irreducible polynomial of degree 6f in K[x] where K = Q(t1,... , tm). The Galois 
group GalK (f) is realisable as the group of permutations of the roots of f induced 
by the automorphisms of the splitting field spl(f) of f . Since we require f to be 
irreducible, GalK (f) is one of the 50 transitive groups, T1, T2,.i.. ,T50, of degree 8 
in Butler and McKay [1]. (In our tables these names are correlated with the more 
informative inherently meaningful names of [5].) It is determined up to relabelling 
of the roots, that is, up to conjugacy in the symmetric group, S8. Our aim is to 
determine sufficient properties to identify GalK(f) among these candidates. 

By multiplication, if necessary, we may assume that f E 2[tl, . . , ti] [x] so that 
we can construct cycle types of GalK (f ) by factoring f modulo maximal ideals p of 
Z[ti,... , tm]. If f has no repeated roots in an algebraic closure of Z[ti,... ,tm]/p, 
the partition of 6f formed by the degrees of the irreducible factors of f mod p is 
the shape (cycle type) of a permutation in GalK (f) (see [24]). After factoring f 
modulo various maximal ideals, we may eliminate those candidate groups lacking 
elements of the shapes found. 

When K = Q, the algorithm of Casperson and McKay [3] can be used to con- 
struct non-trivial decompositions f(x) I g(h(x)). Such a decomposition exists 
whenever GalK(f) has a block system with 6g blocks of imprimitivity. Once a 
decomposition is found, we may eliminate all groups which do not admit such a 
block system. 

Neither shapes nor decompositions are required to determine GalK(f); both 
are useful to reduce the list of candidate Galois groups but these methods do not 
usually suffice to specify the group. Degree 8 is the smallest degree for which there 
are pairs of groups, 

[22]4 = ((1, 3, 5, 7)(2, 4, 6, 8), (1, 6)(2, 5)(3, 7)(4, 8)) and 

Q8: 2 = ((1, 6, 2, 5)(3, 7, 4, 8), (1, 5)(2, 6)(3, 7)(4, 8), (1, 3)(2, 4)(5, 8)(6, 7)) 

of order 16, [23]A(4) & [ A(4)2]2 (order 96) and [23]S(4) & 2 [24]S(4) (order 192), 
with the same frequency of elements of each shape and thus Cebotarev's density 
theorem cannot be used to separate the groups within these pairs. 

RESOLVENT POLYNOMIALS 

We adopt the notation for resolvents in [19]. The action of GalK (f) on r-sets 
(sets of r roots) may be realised in terms of polynomials with roots which are sums 
or products of r-sets of the roots of f. Casperson and McKay [2] discuss efficient 
methods for constructing such polynomials. To construct the 2-sequence resolvent 

R = R(xl+ CX2, f), C; 0,1, 

of degree n2 - n, n = 6f, we make use of the relation (compare [23]): 
k 

between the power-sum symmetric functions of f and R. 



COMPUTATION OF GALOIS GROUPS OVER FUNCTION FIELDS 825 

TABLE 1. These groups (see [1, 5]) are distinguished by test- 
ing the underlined factors of the resolvents; '+7-' indicates re- 
ducible/irreducible over K(4\) 

Group T16- T27- T21- T31- T46- T47- 
1 

[24]4 [2 ]4 [24]E(4) [2 ]E(4) 2[S(4) ]2 [S(4)2]2 
2-set J+4,18,16 _-4,8,16 :E+4,83 -4, 83 +12,16 -12,16 

Group T26-1 [2] eD(4) T28- [24]dD(4) T30- 1 [24]cD(4) T35-[24]D(4) 
2-set -4,8,-+16 +4,8, 16 -4,8,-16 -4,8,-16 
3-set 8,+16,32 8,+16,32 T 8,+16,32 8, 16,32 

We define a Tschirnhaus transformation (over K) on a polynomial f to be an 
invertible mat: x e - N(x)/D(x) P(x) mod f, P(x) E K[x]. If K is omitted, it 
is assumed that K = Q. 

The orbit-length partition of the action of GalK (f) on FS8 (the orbit of F under 
S8, see [19]) is given by the factorization of the resolvent R(F, f), provided it has no 
repeated roots. Although polynomials with repeated roots are theoretically rare, 
being a set of measure zero, they may occur when simple polynomials are chosen for 
f. To eliminate repeated roots, we apply a Tschirnhaus transformation to f. It is 
not simple to program choices for an appropriate Tschirnhaus transformation. We 
need to ensure that the coefficients do not become unwieldy. One suggestion is to 
generate them using x X-> x + 1 and x X-* -1/x which generate the modular group; 
it may be better to let the user choose a Tschirnhaus transformation interactively. 

The discriminant and orbit-length partitions (see [13]) of the r-set and 2-sequence 
resolvent polynomials suffice to identify twenty-four of the fifty transitive groups of 
degree 8. Of the remaining thirteen groups with non-square discriminant, A\, ten 
may be distinguished by testing whether factors of the resolvents are reducible over 
K(4\) (see Table 1). As noted in [19], the reducibility of resolvent factors is an 
invariant of the Galois group. 

The remaining sixteen groups are identified by calculating the Galois group of 
a factor h of a resolvent polynomial as indicated in the last column of Tables 2 
and 3 by resolvent type over the degree of h. That these groups are invariants of 
GalK(f) is an immediate consequence of the fundamental theorem of Galois theory. 
For 6h < 8 we can use either the techniques of [19] or those presented here to find 
GalK(h); however, to distinguish between [A(4)2]2 and [-S(4)2]2 we make use of a 
factor h of degree 12. In this case, we define two degree 12 groups G288 and G576 
isomorphic to the degree 8 groups [A(4)2]2 and ['S(4)2]2 respectively. They may 
be represented as 

G28g8= ((I1, 5, 4) (2, 6, 3) (9, 10) (11, 12), (1, 8) (2, 7) (3, III 4, 12) (5, 9, 6, 1 0)) 

and 

G576 = ((1, 9, 5, 7, 3, 12)(2, 10, 6, 8, 4, 11), (1, 11, 4, 10, 5, 8)(2, 12, 3, 9, 6, 7)). 

As indicated in Table 3, G288 and G576 (and consequently [A(4)2]2 and ['S(4)2]2) 
are distinguished by the Galois group of the degree 6 factor of the 2-set resolvent; 
they have the same orbit-length partition for the 2-set resolvent. 
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TABLE 2. Distinguishing Galois groups for G g A8 

Group Orbit-Length Partition Factorization Galois Group of 
(G g A8) 2 3 4 2 over K(v47A) deg. 8 factor of 
(see [1, 5]) set set set seq (see Table 1) 4-diff resolvent 

TI-C8 87 

T6-D(8) 4,83 83162 
T7- 2 [23]4 83162 
T8-2D8 (8) 4, 8,16 83162 8, 163 
T15- [ 

1 
cD(4)2]2 8, 163 

| T16- [24]4 | +4,8,16 8332 Needed 

T21-1 [24]E(4) +4, 83 8332 Needed 
T23-GL(2, 3) 4,24 8, 242 
T26- 2 [24]eD (4) -4,8, +16 8, +16,32 8, 16,32 Needed 
T27-[24]4 -4,8,16 8332 Needed 
T28-1 [24]dD(4) +4, 8, -16 8, +16,32 8, 16,32 Needed 

T30-2 [24]cD(4) -4, 8, -16 8, +16,32 8, 16,32 Needed 
T31-[24]E(4) -4, 8 8332 Needed 
T35-[24]D(4) -4, 8, -16 8, -16, 32 8, 16, 32 Needed 
T38-[24]A(4) 24,32 T33- 1A(4)2]2 
T40- 2 [24]S(4) 24,32 T34-E(4)2:D6 
T43-PGL(2, 7) 28,42 
T44-[24]S(4) 24,32 T41-E(4)2:D12 
T46- 2[S(4)2]2 +12, 16 Needed 
T47-[S(4)2]2 -12,16 Needed 
T 5 0 -S 8 _ _ _ _ _ _ _ _ _ _ _ 7 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

The '4-diff' resolvent of Tables 3 and 2 is R(F2, f) where 

F = x1 + X2 + X3 + X4 - - X6 - X7 - X8. 

As shown in [19], the existence of af E S8 such that F' = -F implies that 
R(F,f)(x) = R(F2,f)(x2). When the sum of the roots of f(x) is zero we have 
R(F, f) = R(2(xl + X2 + X3 + X4), f) and so the 4-diff resolvent may be derived 
from the 4-set resolvent after applying an appropriate linear Tschirnhaus transfor- 
mation to f. 

Tables 2 and 3 summarize how to distinguish the fifty transitive groups of degree 
8. Where factorization over K(4\) is needed, certain factors of the resolvents 
are underlined in Table 2. A '+/-' means the factor is reducible/irreducible over 
K(4\). 

For each group G, we indicate orbit-length partitions for a set S of resolvent 
polynomials. If G and H are groups of the same parity having the same orbit- 
length partition for each resolvent in S, then G and H have the same partition 
for the remaining r-set (r = 2,3,4) and 2-sequence resolvents. With the exception 
of four groups in Table 2, S is chosen such that no proper subset of S has this 
property. 

The groups ' [24]eD(4), 1 [24]dD(4), 1 [24]cD(4) and [24]D(4) are distinguished 
amongst themselves by testing if factors of the 2- and 3-set resolvents are reducible 
over K(4A), so the 2-set orbit-length partition is included in the table even though 
it is unnecessary to include it in S. 
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TABLE 3. Distinguishing Galois groups for G C A8 

Group Orbit-Length Partition Galois Groups of 
(G C A8) 2 3 4 2 Resolvent Factors 
(see [1, 5]) set set set seq 

T2-4[x]2 4382 87 

T3-E(8) 47 
T4-D8(8) 458 

T5-Q8 (8) 4, 83 87 
T9-D(4)[x]2 4382 83162 

T1o-[22] 4 43 16 83162 
T11-Q8:2 4, 83 83162 
T12-SL(2,3) 4, 24 8, 242 
T13-A(4)[x]2 2,628, 242 Gal(2-set/4) = A4 
T14-S(4) [2 ]2 2, 628, 12224 
T18-[22]D(4) 8332 
Tl9-E(8):4 8, 16,32 Gal(2-set/8) = 

T21_ [2 [4]E(4) 
T20-[23]4 4,8, 16 8332 
T22-[23]22 4, 83 8332 
T24-S(4)[x]2 2,628,242 Gal(2-set/4) = S4 
T25-E(8):7 14, 56 Gal(4-diff/7) = C7 
T29- [23]D(4) 8,16,32 Gal(2-set/8) = 

T31- [24]E(4) 
T32-[23]A(4) 8,48 Gal(2-set/4) = A4 
T33-[' A(4)2]2 2, 12, 24, 32 Gal(4-diff/6) = A4 
T34-E(4)2 :D6 2,12332 
T36-E(8):F2, 14, 56 Gal(4-diff/7) = C7.C3 
T37-PSL(2, 7) 14242 
T39- [23] S(4) 8,48 Gal(2-set/4) = S4 
T41-E(4)2:D12 2, 12,24,32 Gal(4-diff/6) = S4/V4 
T42-[A(4)2]2 2, 32, 36 Gal(2-set/12) = G288 

(For G288: Gal(2-set/6) = C3.S3) 
T45-[lS(4)2]2 2, 32, 36 Gal(2-set/12) = G576 

(For G576: Gal(2-set/6) = 32.2 
T48-E(8):L7 14,56 Gal(4-diff/7) = 

PSL(3, 2) 
_T49-A8 70 |_ _ 

POLYNOMIALS WITH GIVEN GALOIS GROUPS 

For each transitive group G of degree 8, Tables 4 and 5 contain a representative 
polynomial f E Q[x] such that GalQ(f) = G. In the tables, (k denotes a primitive 
kth root of unity. 

Many of these polynomials were suggested to us in earlier work by Darmon [6]. 
Examples for SL(2, 3), PSL(2, 7) and PGL(2, 7) are drawn from [8] and [11]. 

In [18], Soicher constructs a polynomial for E(8):L7 and mentions that the same 
method may be used for E(8):7 and E(8):F21. For ['A(4)2]2 and E(4)2:D6, we use 
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TABLE 4. Rational polynomials with Galois groups for G g A8 

Group f (x) Remarks 
(G g A8) 

TI-C8 w8 - 68w6 ? 918w4 spl(f) = Q(617 + (171) [6] 

-612x2 + 17 

T6-D(8) x8- 8x4 - 2 f = (x4 - (21/4 + 23/4)2)x 
(x4 + (21/4 - 23/4)2) [6] 

T7-2 [2]34 8 - 2OX6 + 10Ox4 f = t 4 (w2 - (cO + 2c + 3)) 

-160x2+80 c= 5?",3= 5- 5 [6] 

T8-2D8(8) x8 - 2 [6] 

T15-[ 4cD(4)2]2 x8 - 16x4 - 98 f = (x4 - (21/4 + 2(2)3/4)2) x 

(x4 + (21/4 - 2(2)3/4)2) [6] 
T16-' [24]4 x8 - 5x4 + 5 Gal(x4 - 5X2 + 5) = C4 [6] 

T17-[42]2 x8 + 2x4 + 2 

T21- 2[24]E(4) x8 + 8x6 + 31x4 + 60x2 + 45 f = (w2 + 2)4 + 7(X2 + 2)2 + 4 [61 

T23-GL(2, 3) x8 - 44X2 - 44 

T26- 2 [24]eD(4) x8 + X4 + 2 Gal(x4 + x2 + 2) -D4 [6] 

T27-[24]4 x8 + 4X6 + lOx4 + 12w2 + 7 Gal(x4 + 4x3 + lOx2 + 12x + 7) C4 [6] 

T28- 2[24]dD(4) x8 + 4w6 + 8x4 + 8x2 + 2 Gal(x4 + 4x3 + 8x2 + 8x + 2) = D4 [6] 

T30- 2 [24]cD(4) X8 - 4w6 ? 44 -2 

T31-[24]E(4) x8 + 4X6 + 7x4 + 6x2 + 6 Gal(x4 + 4x3 + 7w2 + 6x + 6) = V4 [6] 

T35-[24]D(4) x8 + 4w6 + 7x4 + 6x2 + 5 Gal(x4 + 4x3 + 7w2 + 6x + 5) = D4 [6] 

T38-[24]A(4) w8 ? 8w2 ? 12 

T40-2 [24]S(4) x8 + 12w2 -9 

T43-PGL(2,7) x8 + x7 + 7w6 + x + 1 [11] 

T44-[24]S(4) x8 + x2 + 2 

<46- 2 [S(4)232 w8 - 4w6 + x4 -43 

+2x2 + 4x + 2 

T47-[S(4)2]2 x8 + 4x5 + 8 

T50-S8 x8 + x + 2 

a method derived from Soicher's: let H be a subgroup of index s in G1 such that 
G2 - G1/(n,CG1 o-1Ho-) and suppose h is a polynomial with roots 'y = -Y,, . . . <r y 
such that Gal(h) = GC; then we may construct F E K[Xl,... , cXr] with stabG1 (F) = 
H (see [22] for example). Using the notation of [19], FG1 = {Fl,... , FS} where 
the Fi are distinct functions. Provided it has no repeated roots, the polynomial 
RF = Wls(x - Fi(y)) E K[x] is of degree s with Gal(RF) = G2. To remove 
repeated roots, we apply a Tschirnhaus transformation to h. In this way we arrive 
at polynomials for [LA(4)2]2 (a quotient of GI = [24]A(4)) and E(4)2:D6 (G1 
[23]S(4)). 

The remaining polynomials are found by computer searching. We were guided in 
our searches by Soicher [17, pp.85-87]. In particular, we use his ideas for generating 
polynomials with square discriminant. 
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TABLE 5. Rational polynomials with Galois groups for G C A8 

Group f (x) Remarks 

(G C A8) 

T2-4[x]2 x8 +2x6 +4x4 ?8x2 + 16 spl(f) = Q((5, ) [6] 

T3-E(8) x8-12x6 + 23x4 - 12 ? 1 spl(f ) = Q?(VX, v3, v%) [6] 

T4-D8(8) x8 + 4X6 + 8x4 + 4X2 + 1 spl(f) = spl(x4 -2) [6] 

T5-Q8(8) x8- 24X6 + 144x4 - 288X2 + 144 spl(f) = 

(Q(V, V~, 0(2 + V')(3 + V)) (6] 

Tg-D(4)[x]2 x8-lOx4+1 f = H(x +V5 +t) [6] 

Tio-[22]4 x8 -3X6 + 9x4-12X2 + 16 f = Hi=4(x2 - (4x-2) [6] 

T11-Q8:2 x _ 18x4 + 9 spl(f) = normal closure of 

Q(v'12 7v'+?12 +67v) (6] 

T12-SL(2,3) x8 + 9X6 + 23x4 + 14X2 + 1 [8] 

T13-A(4)[x]2 x8 + 24x4 + 64w2 + 144 spl(f) Q(spl(X4 + 8x + 12), i) 

T14-S(4)[l]2 x8 + 150x4 - 500X2 + 5625 spl(f) spl(x4 + 2x + 3) 

T18- [22]D(4) x8 + 8x2 + 9 

T19-E(8):4 x8 - 4X6 + 12x4 - 8x2 + 4 [6] 

T20-[23]4 x8 + 4X6 + x4-6x2 + 1 f = (x2 + 1)4-5(X2 + 1)2 + 5 [6] 

T22-[23]22 x8 - 28x4 + 100 f = JI(X2 - (?2V3- ? V2-)) [6] 

T24-S(4)[x]2 x8 - 4X2 + 4 

T25-E(8):7 x8- x7 + 2x6 + 2x5 + 7x4 See accompanying text 

+3x3 + 4X2 + 3x + 5 

T29-[23]D(4) x8 + 4X6 + 7x4 + 6x2 + 4 Gal(x4 + 4x3 + 7X2 + 6x + 4) D4 [6] 

T32-[23]A(4) x8 - x6 - 3X2 + 4 

T33-[!A(4)2]2 x8 - 4x7 - 8x6 + 24x5 + 36x4 See text 

-24x3 - 48X2 + 48x - 12 

T34-E(4)2:D6 x8 - 6X6 - 4x5 + 24x4 - 28X2 + 18 See text 

T36-E(8):F21 x8 + 2x7 + 28X6 + 84x5 + 224x4 See text 

+392x3 - 336x + 112 

T37-PSL(2,7) x8 + 2x7 + 28X6 + 1728x + 3456 [11] 

T39-[23]S(4) X8 + X2 + 1 

T41-E(4)2:Di2 x8 + 16x4 + 16x3 + 8 

T42-[A(4)212 x8 + 7x4 + 8x3 + 9 

T45- S S(4) 212 
x8 - 8X6 - 8x5 + 8 

T48-E(8):L7 x8 + 14x5 + 7X4 - 14x3 + 4x + 14 [18] 

T49-A8 x8 + 8x3 + 10 

Note that GalK (f) has a system of imprimitivity consisting of blocks of size two 
if f is even, and conversely, given f such that Gal(f) is imprimitive with blocks of 
size two, we may construct an even f as follows: 

F'rom degree considerations, f(x) with roots {cai}, has a quadratic factor q in 
(Q(f3)[x] where f(x) I g(h(x)), f3 a root of g. The discriminant of 0, A ,, lies in Q(f3) 
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so by eliminating f3 we obtain 

f = resultant(x2 - AO, g(3),i3). 

Indexing the roots so that 

{Ce l v C2 Olci3 v O4 : Cn-}1 i Cen 

partitions them into blocks of size two, we find the roots of f are 

{O Cl - e2, i C2 -OCl -' i Ce )On- 1 - Cen Cen -Cen- 1} 

so that Gal(f) = Gal(f) (provided f has no repeated roots). 
For each group in Tables 4 and 5 with such a system of imprimitivity, we give 

the associated polynomial in x. 
Gene Smith [20] has provided test polynomials over Q(t) for all Galois groups of 

degree < 8. 

REMARK 

We have described techniques which, together, are designed to reduce the po- 
tential Galois groups to a single group, Gal(f). These techniques, when combined 
with an ad hoc approach to a small proportion of intransigent groups, are practi- 
cable and adequate up to degree 8 and, no doubt, further. For example, Hulpke [9] 
has recently completed an enumeration of permutation groups up to degree 31. 
However this may be a bound to the degree of f for which we can, in practice, 
find Gal(f). In higher degrees there exist pairs of groups [16] which are likely to 
be extremely hard to separate, having identical irreducible representations and iso- 
morphic proper subgroup structure. The smallest such groups appear to be of order 
256 but they have a minimal transitive faithful permutation degree of 32. One such 
pair is indexed (3678,3679) in O'Brien's [14] 2-group list accessible in GAP and 
elsewhere. It is true, however, that as a last resort the polynomial invariants of a 
group identify it uniquely even though they may be unwieldy to work with. 
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